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ABSTRACT 

Where in Washington State is the pygmy saxifrage? The predicted 

distribution of Saxifraga hyperborea 

 

Jaileen C. Merced Hoyos 

 

Alpine ecosystems face some of the highest risks from climate change around the world. 

Conservation efforts are necessary to prevent the extinction of many alpine species. In order to 

develop reliable conservation policies and practices, more information about species’ distributions, 

habitats, and threats in alpine areas is necessary. This project built a species distribution model 

(SDM) for Saxifraga hyperborea, a Washington state alpine sensitive plant species, and examined 

its state status. Saxifraga hyperborea is ranked as sensitive in Washington but bordering countries 

and states have ranked the species as secured. To build the model, I used 6 climatic layers; 1) 

continentality, 2) mean annual precipitation, 3) growing degrees day, 4) number of frost-free days, 

5) precipitation as snow, and 6) climatic moisture deficit, along with 31 presence and 93 pseudo-

absence points. I used the ArcGIS Forest Based Classification tool, which is based on the Random 

Forest algorithm. The result of this model was a map of potential habitat for Saxifraga hyperborea 

in Washington State. The model predicted promising areas in the Okanagan and Canadian Rockies, 

where the species has not been found to date in Washington State. This study is the beginning of 

a potential journey to resolve the species’ confusing state status and to identify areas to potentially 

find more populations of Saxifraga hyperborea.  
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Introduction 

Approximately 15-24% of the Earth is covered by arctic and alpine tundra together 

(Charles et al., 2020). In the alpine zones in Europe, Inouye (2019) estimated that more than 80% 

of suitable habitat will be lost, for 36-55% of alpine species, and 31-51% subalpine species, by 

2070-2100. Among the many effects on the world’s flora due to climate change, especially 

warming temperatures, alpine plants face some of the highest risks (Verrall et al., 2020; 

Wershow et al., 2018). For example, one of the biggest threats from climate warming to alpine 

species is the migration of subalpine trees and woody shrubs into the alpine ecosystem (Charles 

et al., 2020; Rumpf et al., 2017). In the Tibetan Plateau, Wang et al. (2014) found that vegetation 

coverage distribution has increased by 18% from 1972-2009, triggered by higher temperatures 

and precipitation. The arrival of new plant and animal species is predicted to introduce 

competitors that could potentially create changes in the plant and pollinator interactions (Inouye, 

2019). More importantly, the change in range of species has impacts on biodiversity, biome 

integrity and ecosystem services (Oldfather, 2018). 

Additional threats to alpine ecosystems include changes in weather patterns, melting of 

permafrost, changes in trophic interactions, and loss of relict species with disjunct distributions 

(Charles et al. 2020). Also, changes in precipitation, snowmelt and snowpack will affect the 

growing season, reproductive behavior, and activity of pollinators (Korner, 2021; Inouye, 2019). 

The rapid change in climate is “winning the race” and alpine plants have not typically been able 

to adapt or respond—and so we have reached the point where assisted species migration and 

hybridization has been proposed to be a conservation strategy for some alpine plants (Charles et 

al., 2020).  
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Saxifraga hyperborea is an alpine plant that grows in moist rock crevasse, talus on 

mountain peaks and can be found in Canada, Russia, Greenland, and the western United States 

(Herbaria, 2020). Saxifraga hyperborea’s unique habitat requirements make searching and 

monitoring this species complex. Only those willing to climb and backpack can ensure an 

encounter with this plant. Additionally, the plant is small and hard to notice. It could grow up to 

10 cm tall, it forms patches of up to 8 cm wide, have mostly basal leaves that are 3-6 mm broad, 

and its population distribution is sparse (Camp et al., 2011).  

I was fortunate to encounter Saxifraga hyperborea twice last summer. My job with the 

Rare Care program at the University of Washington brought to my attention the alarming state of 

alpine ecosystems. Part of my job was to set permanent plots for the National Park Service to 

continue the monitoring of endangered, threaten and sensitives alpine plants in the National 

Parks areas. At the end of the summer, I spoke with Wendy Gibble, Rare Care program 

coordinator, she mentioned multiple alpine plant species that could benefit from Species 

Distribution Model study. Based on present data availability I decided to study Saxifraga 

hyperborea.  

The plant is categorized as secure and widespread in most of these locations. In contrast, in 

the state of Washington, it is listed as sensitive. For example, in Idaho, the plant is listed as SNR, 

which means “conservation not yet assessed,” in Oregon, it is not listed as a species of concern, 

and in Canada, it is listed as secure (Washington Natural Heritage Program, 2019; Klinkenberg 

et al., 2020; Idaho Fish and Game, n.d.). There is a concerning discrepancy in the status of this 

plant in the Pacific Northwest, particularly in Washington, which is the only state in the west that 

has it listed as sensitive. 
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After a conversation with two rare plant experts in Washington State, both agreed on the 

enigma behind the status of this plant. According to the Washington Natural Heritage Program 

database, there are 46 known locations of this plant in Washington State. For instance, the 

distribution of the species is concentrated in the Northeast Olympic Peninsula and the North 

Cascades. To better understand the distribution of the species in Washington State, this project 

intended to build a species distribution model (SDM) for Saxifraga hyperborea. The SDM was 

made using the Forest-Based Classification tool in ArcGIS, six environmental layers and 

presence and pseudo-absence points. The reason for Saxifraga hyperborea to be listed as 

sensitive could be due to the lack of information on population locations. Therefore, this SDM 

aimed to detect areas of potentially suitable habitat for Saxifraga hyperborea.  The suitable 

habitat detected by the model could also serve as potential areas for the reintroduction of 

Saxifraga hyperborea in the future.  
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Literature Review 

Plant Conservation in the United States 

 

“The Earth’s ecosystems continue to be destroyed and degraded at unprecedented rates, and the 

capacity to restore them is extremely limited. But we must begin to address this need if we want 

to maintain biodiversity and ecosystem services into the future. Ecosystem services are the 

benefits people obtain from ecosystems, including provisioning of food and water; regulation of 

atmosphere, floods, drought, land degradation, and disease; support for soil formation and 

nutrient cycling; pollution filtering; and cultural services such as recreational, spiritual, 

religious, and other nonmaterial benefits (Millennium Ecosystem Assessment 2005), and plants 

serve as the foundation of ecosystems. Plants are not optional; they are essential to life and 

central to the future of human well-being. Plants provide habitat, food, cover, nesting areas, and 

more for the planet’s wildlife. This rich legacy of biodiversity is an invaluable and irreplaceable 

component of our natural heritage and deserves our protection.” (Havens et al., 2014, p. 10) 

 

A reflection on Havens’ quote allows us to realize that we need to remember the 

significance of ecosystem services for our survival. More importantly, it reflects on how plants 

are necessary to maintain balance. Humans cannot allow or afford the extinction of more plant 

species or any species. Preserving and sustaining biodiversity must be a priority since we depend 

on these ecosystems (Brandt et al., 2014). Therefore, the protection and preservation of 

endangered species play an essential role in our survival (Mahoney, 2009). Mass extinction has 

happened before on Earth, driven by natural events. Today, mass extinction is 99% due to human 

behavior. (Primack, 2014). According to the United Nations report, more than 30% of 

amphibians, 33% of coral, 10% insects and, 33% of all mammals are threatened (Msuya et al., 

2019). Angiosperms are disappearing at a rate of 3 species per year, 500 times faster than if it 

had happened by natural causes (Humphreys et al.,2019). To reduce the stress these statistics 

signal, we need to focus on what has survived and protect these species. According to O.G. 

Wilson, ecosystems may be reduced and degraded, but if a species survives, there is still hope to 

recover an ecosystem (Wilson, 2010).  
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In addition to the fast degradation of ecosystems, conservationists must accommodate 

political interests. Available funding and budgets play a significant role in this race against time. 

The Endangered Species Act (ESA) passed in 1973 required preserving and restoring endangered 

species populations. (Mahoney, 2009). The ESA and the Fish and Wildlife Service developed a 

recovery guideline to identify the most at-risk species to allocate funding. Species are 

categorized according to the 1) degree of threat, 2) potential for recovery, and 3) taxonomic 

distinctiveness (Negron-Ortiz,2014;  Fish and Wildlife Service, Interior, 1983).  Species 

classified as endangered are the ones who get ESA recovery funding (Mahoney, 2009). Since the 

listing of endangered species is a political decision influenced by external factors, this brings a 

disproportionate allocation of funding that focuses money on only a few species (Ando, 1999; 

Mahoney, 2009). According to Mahoney (2009), the size of the species affects the amount of 

funds it receives; the larger the species, the greater the fund.  

Approximately one-third of the United States flora is considered threatened, and plants 

account for over one-half of the federal listed species (Havens et al.,2014; NatureServe, 2012). In 

addition, plant conservation research receives approximately 4.1% of the available government 

funding (Negron-Ortiz, 2014). Yet, plant conservation still lacks support compared to wildlife 

conservation (Simon et al., 1995). As conservationists, we must accept that data on the status of 

species of concern is the most powerful tool to guide our effort to provide an adequate 

assessment for the recovery of the species. Data on species may also include biological and 

ecological limiting factors for the populations, threats, and possible management needs (Fish and 

Wildlife Service, Interior, 1983). But before we assess those issues, information on the 

geographic distribution of the species is essential. This knowledge gap is called the Wallace 

shortfall. This shortfall refers to the lack of data on the geographic distribution of species (Ladle 
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et al., 2011). The Wallace shortfall of Saxifraga hyperborea is the type of knowledge gap that 

my study means to tighten. 

Conservation Biogeography 
 

The distribution of species is an essential puzzle piece to understanding species habitat 

and threats. Fields like conservation biogeography depend on this type of data. Conservation 

biogeography is a relatively new field in conservation. It seeks to predict the effects of humans 

on biodiversity and inform management decisions on behalf of the conservation of biodiversity 

(Serra-Diaz, 2019; Lomolino, 2004; Whittaker, 2005). Lomolino (2004) argues that this 

discipline has two focuses: 1) conservation of the biological diversity and 2) the preservation of 

the geographic, ecological, and evolutionary context. There are three main scopes within the 

conservation biogeography: 1) population scale, 2) landscape scale, and 3) geographical scale. 

The population scale evaluates population decline, viability, competition, and degradation of 

small populations. The landscape-scale refers to the study on habitat corridors and 

metapopulation. Finally, the geographical scale maps and models biogeographical patterns and 

diversity (Ladle et al., 2011). This research study falls within the geographical scale, modeling 

the distribution of a species. 

 Conservation organizations, government agencies, and consultants play an essential role 

in collecting demographic data on rare species in Washington State. The Washington Natural 

Heritage Program (WNHP) manages and stores this data. The WNHP role is to categorize 

species, ecosystems, and their conservation needs. They currently have around ~7,000 records of 

rare species in their database. This data is essential to allocate conservation funds and determine 

well-informed conservation priorities (Natural Heritage Program, 2021). Programs like WNHP 

are fundamental to expanding our understanding of species of concern. My study will use 
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WNHP data to predict the potential distribution of the Washington state rare plant species 

Saxifraga hyperborea. 

Species Distribution Models 
 

I will attempt to predict the current distribution of Saxifraga hyperborea by building a 

species distribution model (SDM). SDMs have become one of the most important tools for 

conservation biology, ecology, and evolution (Zurell et al., 2020; Mi et al., 2017). According to 

Elith and Leathwick (2009), SDMs is a tool that combines the known location of species with 

environmental estimates. According to Sierra-Diaz et al. (2016), we have benefited from SDMs 

by projecting in space and time the distribution of species. SDMs have been critical instruments 

to 1) identify the conservation problem, 2) define possible conservation actions, 3) predict 

consequences of actions, and 4) detect habitat suitability at a local and global scale (Guisan et al., 

2013; Maguire, 2016). There are many applications for SDMs, according to an Araujo et al. 

(2019) study that examined >600 studies utilizing SDMs. The most common applications of 

SDM were focused on 1) predicting the effects of climate change on biodiversity, 2) selecting 

places for protected areas, 3) selecting areas for habitat restoration, and 4) selecting species 

translocation (Araujo et al.,2019). My study’s focus falls within the second and fourth most 

common applications mentioned above. Predicting potential distribution areas could also provide 

information on potential areas where this plant species could be relocated or reintroduced. SDMs 

have various techniques; Random Forest (RF) is the machine learning algorithm applied in this 

project.  
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Random Forest 
 

 Today we can find different modeling algorithms to predict a species distribution. The 

most common are the Generalized Linear Model (GLM), BioClim, Regression Trees, Domain, 

Maxent, GARP, and Random Forest (Duan et al., 2014). I will be using the Random Forest 

model, which has two primary frameworks, classification or regression. Since my response 

variable is binary (presence/absence) I used the classification model.  Random Forest works by 

creating decision trees based on the selected independent variables (in this case, climatic 

variables). Based on those variables and response data (presence and absence points), the model 

(once created and trained) can predict outcomes. In this case, the model identifies areas as 

potential presence and absence.  The Random Forest’s main structure is to create multiple 

numbers of decisions trees. Every tree function as a flow chart. Depending on the random 

climatic variables and decisions, the results on every tree act as a vote. When the same data goes 

through multiple randomized trees, the finding that repeats the most is the “winner.” This type of 

machine learning can then predict based on the trained data. The model is trained with 

approximately 2/3 of the data, and the other 1/3 is used to validate your model.   

The output of Random Forest classification is a confusion matrix. This matrix provides 

information on the accuracy and sensitivity of your model. Sensitivity explains when one area 

was correctly assigned as a suitable habitat. But accuracy describes both 1) when the model 

correctly assigned an area that was not suitable as a non-suitable habitat and 2) when one area 

was correctly assigned as suitable habitat (ESRI, 2019). In the final output, the model will 

predict potential areas of suitable habitat (Breiman, 2001; Biau et al., 2016). One item of note is 

that one of the most significant constraints of dealing with rare species is the small size of the 
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data. The main driver in using Random Forest was that this model had demonstrated a good 

performance even with a small data size (Mi et al., 2016). 

Saxifraga hyperborea 
 

 

 

 

 

 

 

 

 

 

 

 

The baseline data I used had 46 presence points for Saxifraga hyperborea, provided by 

the WNHP, which are concentrated in the North Cascades and the Olympics (Figure 1). This 

plant tends to grow in subalpine and alpine ecosystems; it grows at an elevation of ~5,200-8,800 

feet (WTU Herbarium, 2004). The plant is found in shaded cliffs, talus, and rock crevices (Camp 

et al., 2011). As shown in Figure 2, Saxifraga hyperborea can also be found in Russia, 

Greenland, and Canada. In the United States, it can be found in California, Montana, Wyoming, 

Figure 1:Saxifraga hyperborea occurrence in Washington State. Data from the Washington Natural Heritage Program. 



10 
 

Idaho, New Mexico, Arizona, Oregon, and Alaska (Herbaria, 2020; WTU Herbarium, 2004). 

Saxifraga hyperborea is a tufted perennial, forming patches up to 8 cm broad and 1-10 cm tall 

(Figure 3). Leaves are mostly basal, round to kidney shape, with 3-9 round lobes. This plant 

blooms from June to August; terminal flowers have 5 white to purplish petals, 5 erect sepals, 10 

statements, and half inferior ovaries. The fruit is a 4-6 mm long capsule (WTU Herbarium, 2004; 

Camp et al., 2011; Saxifraga hyperborea-FNA, 2020). Saxifraga hyperborea is a rare species in 

Washington State (Camp et al., 2011).  

 

 Figure 2.Distribution of Saxifraga hyperborea based on herbarium specimens and photos. Map retrieved from E-Flora BC: 

Electronic Atlas of the Flora of British Columbia. 

(https://linnet.geog.ubc.ca/eflora_NewFullMap/index.html?sciname=Saxifraga%20hyperborea&BCStat) 
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Figure 3.Saxifraga hyperborea. Copyright 2020 Gary Brill. 

 

Conservation Status of Saxifraga hyperborea 
 

Saxifraga hyperborea is classified as a G5/S3 on the Heritage Network Ranking System. 

The Heritage Network Ranking System is a classification system for species and ecosystems 

developed by Nature Serve (Nature Serve, 2012). The “G” refers to the Global conservation 

status, and the 5 is the level. In this case, a “G5” species is described by the Nature Serve (2012) 

as “Secure- At a very low risk of extinction or elimination due to a very extensive range, 

abundant populations or occurrences, and little to no concern from declines or threats.” The “S” 

refers to the subnational conservation status, and the 3 is the level. The “S3” is defined by the 

Nature Serve (2012) as “vulnerable- moderate risk of extirpation in the jurisdiction due to a 

fairly restricted range, relatively few populations or occurrences, recent and widespread declines, 
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threats, or other factors.” WNHP then uses the Heritage Network Ranking System to categorize 

the state status of species of conservation concern in Washington State (Washington Natural 

Heritage Program, 2019). Species like Saxifraga hyperborea categorized as “G5/S3” are then 

classified in Washington as sensitive based on the Washington matrix (Washington Natural 

Heritage Program, 2019). According to the Washington Natural Heritage Program (2019), 

sensitive is defined as “vulnerable or declining and could become Threatened or Endangered.”  

However, Saxifraga hyperborea is not listed as a species of concern in other states and 

countries.  For example, in British Columbia, the heritage rank is “G5/S5”. The “S5” is defined 

by Nature Serve (2012) as “demonstrably widespread, abundant and secure.” In the British 

Columbia list status, this plant is classified as “yellow.”  According to the BC Conservation Data 

Center (2021) “yellow” is defined as “species or ecological communities that are apparently 

secure and not at risk of extinction. Yellow listed species may have red- or blue-listed 

subspecies”.  In addition, the Committee on the Status of Endangered Species in Canada and the 

Species at Risk Act haven’t ranked Saxifraga hyperborea. 

In the same way, in the United States, the situation is a little unclear. In California, 

Oregon, Montana, Colorado, New Mexico, Arizona, and Alaska are not listed as species of 

concern. On the other hand, in Wyoming, Saxifraga hyperborea is listed as “G5/S3”. Finally, in 

Idaho, the plant is listed as SNR, which Nature Serve (2012) defines as “State conservation 

status not yet assessed.” 

Again, the difference of Saxifraga hyperborea status between Washington and the 

adjacent areas is unusual. Why would Saxifraga hyperborea be sensitive in Washington but not 

listed as a species of concern across the border and states around it? In a conversation with 

Wendy Gibble, program manager for the Washington Rare Plant Care and Conservation 
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program, she mentioned her curiosity about the distribution of Saxifraga hyperborea in 

Washington. Specifically, she thought it was interesting that there is not enough information on 

the presence of this rare plant. She also pointed out that the Saxifraga hyperborea growth habit 

complicates the search for this species. As mentioned before, this plant species tends to grow in 

alpine areas, particularly in rock crevices on top of mountains. From two populations I had the 

chance to monitor this summer, we found less than 200 individuals in an area of 5 to 3meter 

radius on both occasions. The population arrangement of this plant is very patchy.  

I had a similar conversation with Walter Fertig, the botanist for the WNHP, where he 

agreed with Wendy’s concern. Both experts express that Saxifraga hyperborea could be 

classified as sensitive in Washington State because there is insufficient information on the 

current distribution. Both conversations brought me to the conclusion that WNHP needed more 

information on the presence of Saxifraga hyperborea. This project aims to inform the potential 

distribution of Saxifraga hyperborea in Washington State.  
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Methods 

Data Management 
 

I obtained 46 presence location points of Saxifraga hyperborea from WNHP. To avoid 

pseudo-replication, I removed 15 presence points located less than 0.5 miles from each other at 

random, which resulted in a final n of 31 presence points. Data provided by WNHP did not 

include absence points. Therefore, pseudo-absence points were created in ArcGIS Pro. To make 

the pseudo-absence points, I built a layer with suitable habitat for Saxifraga hyperborea based on 

the known ecology (Camp et al., 2011; WTU Herbarium, 2004). The suitable habitat layer was 

developed by eliminating unsuitable habitat based on the land cover data layer from the National 

Land Cover Dataset (National Land Cover, 2009). I used the reclassify tool to remove the 

following classifications: “Open Water,” “Developed, Open Space,” “Developed, Low 

Intensity,” “Developed, Medium Intensity,” “Developed, High Intensity,” “Dwarf Scrub,” 

“Shrub/Scrub,” “Grassland/Herbaceous,” “Sedge/Herbaceous,” “Lichens,” “Moss,” 

“Pasture/Hay,” “Cultivated Crops,” “Woody Wetlands” and “Emergent Herbaceous Wetlands.”  

Then I created a buffer area of 138 miles (~2 degrees) around each presence point based on the 

recommendation of Barbet-Massin et al. (2012). To ensure random points were within the state 

of Washington, I cropped the buffer area with a Washington State outline polygon. I created ten 

pseudo-absence points per presence point within the buffer area using Create Random Points 

tool. All the pseudo-absence points outside the suitable area range were deleted utilizing the Clip 

tool. The final pseudo-absence layer had 93 pseudoabsence points and 31 presence points (Figure 

4). All layers created were then projected to NAD 1983 UTM zone 10N.  
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Figure 4. Final locations of layer presence and pseudo-absence points within Washington used in the study. 

Legend 
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Environmental Variables 
 

I selected twelve potential climatic and topographic variables based on the Wershow and 

DeChaine (2017) study of five endemic alpine plant species in the Olympics. These included: 1) 

mean annual temperature (MAP), 2) mean warmest month temperature (MWMT), 3) mean 

coldest month temperature (MCMT), 4) continentality (TD), 5) mean annual precipitation 

(MAP), 6) growing degrees days (DD5), 7) number of frost-free days (NFFD), 8) precipitation as 

snow (PAS) and 9) climatic moisture deficit (CMD), 10) slope, 11) aspect and 12) elevation. I 

tested all variables for collinearity and when any pairwise correlation was high (r >0.8, Table 3) 

one of the variables was taken out to avoid model inaccuracy (Wershow and Dechaine, 2017). 

The final six variables used in our model were: 1) continentality, 2) mean annual precipitation, 3) 

growing degrees day, 4) the number of frost-free days, 5) precipitation as snow, and 6) climatic 

moisture deficit (Figure 5). Climatic variables were obtained from Adapt West (Wang et al., 

2016) from a 1991-2020 time period at 1km resolution. Elevation was obtained from the U.S. 

Geological Survey (U.S. Geological Survey, 2020) at 30m resolution, as a digital elevation 

model (DEM). Slope and Aspect layer was created from the DEM using the Slope tool and 

Aspect tool in ArcGIS pro.  

 

 

 

 

 

Table 1. Results of the correlation test for the environmental variables. Values with * r >0.8.  
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Random Forest Model 
 

Random Forest is a supervised learning algorithm that creates decision trees (Donges, 

2019). Decision trees split categorical data in this study between presence (1) and absence (0) 

based on the environmental variables. Multiple trees are made and merged to ensure the most 

accurate prediction. The prediction that repeats the most or has the most votes is the chosen one. 

If multiple decision trees predicted potential presence more than absence in a particular area, the 

model would then mark that area as presence based on the environmental variables.  

The model was built in ArcGIS Pro with the Forest-based Classification tool. I ‘trained’ 

several different models with different combinations of the original environmental variables.  I 

evaluated accuracy and sensitivity as a primary indicator for a “good” model.  First, I tried the 

combination of the nine environmental variables that were not highly correlated (r >0.8, Table 2) 

with each other. Accuracy for the training data was high (0.95; Table 2), but accuracy for the 

validation was lower (0.86). Another attempt to find the most precise model was to lower 

correlation coefficient (r>0.7) to evaluate collinearity. From the previous 9 layers I ended up 

with only six layers. In this version of the model, accuracy and sensitivity stayed the same for the 

training data, but for the validation data, the sensitivity for presence was significantly lower 

(0.75) compared to the previous attempt (Table 3). Various combinations of environmental 

variable were trained, but the previous attempts mentioned were the second highest best scores I 

obtained. The final six environmental variables (TD, MAP, DD5, NFFD, PAS, CMD) selected 

had the best results for accuracy and sensitivity. 

After selecting our final environmental variables, a total of 100 decision trees was 

selected for this model. I tested our model using 50 decision trees, 100 trees and 200 trees. 

Increasing the number of trees helps evaluate the performance of the model (ESRI, 2019). While 
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testing for the different trees I evaluated the score in the mean square error and model accuracy. 

The 200-decision tree model had a low mean square error, but it also had a very low accuracy 

score (Table 4).  Results for the 50 decision trees model had similar result as the 100 decision 

trees model. The 50-descision trees model overall mean square error and the absence mean 

square score was lower than the 100-desions trees model. But the presence mean square error 

was lower for the 100 decision trees model. I decided to select the 100-decision model since it is 

recommended to use as many trees as possible to assure a more stable result and a less 

susceptible model to noise in the data (ESRI, 2019). The model was trained with 90% of the 

data, and the remaining 10% was used to validate our model. Since our presence and absence 

data was not balanced (31 presence and 93 absences) I checked the Advanced Forest Option to 

“Compensate for Sparse Categories”. This option ensures that each category was represented in 

each tree (ESRI, 2019).  

Finally, another metric that I used to select the final model was the Out of Bag errors 

(OOB). The Out of Bag errors for the final model were fairly low (Table 5). These errors help us 

understand the accuracy of the model by indicating the percentage of incorrect classifications. 

The OOB error is calculated using the subset of training data that was not used in the model 

analysis (Bhatia, 2019).  The lower the OOB error, the higher the accuracy and success of our 

model (ESRI, 2019). The percentage OOB error for presence (1) was 0.296, while the percentage 

OOB error for absence (0) was 8.634. The mean square error is the overall percentage of the 

incorrect OOB classifications (ESRI, 2019). I obtained a 6.569 mean square error. All the OOB 

errors were calculated based on 100 decision trees.  
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Table 2. Accuracy and sensitivity results for the first potential 9 layers after the first correlation test (r>0.8). Accuracy and 

Sensitivity results for this model had lower scores compared to our final model.  

Table 3. Accuracy and sensitivity results for the second correlation test (r>0.7). Accuracy and Sensitivity results for this 

model had lower scores compared to our final model. scores compared to our final model.  

 

Table 4. Results for different number of trees. These results were used to select the right number of trees for our final model.   
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Table 5. Model Out of Bag (OOB) mean square errors results. The mean square error is the overall percentage of the 

incorrect OOB classifications. 
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Figure 5.Climatic variables selected for the final model. Layers retrieved from AdaptWest at 1km resolution. Climatic layers are dated from 

1991-2020 time period. 
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Results 

Model 

 

The top variable of importance from the final Random Forest model of Saxifraga 

hyperborea in Washington was precipitation as snow (Table 6). Importance is calculated using 

the Gini coefficient. The Gini coefficient is the sum of the number of times a variable creates a 

split and the impact of the split divided by the number of trees (ESRI, 2019). The importance 

value of precipitation as snow was 0.39, followed by the mean annual precipitation (0.32), with 

the rest of the variables receiving similar importance values (0.28-0.30, see Table 6).  

 

 

 

 

 

The second output of the model is the sensitivity and accuracy score for the training and 

validation data (Table 7). Higher scores (closer to 1.0) connote better prediction. In the category 

section, one represents presence, and zero represents absence. Sensitivity for the training and 

validation data in the presence category was 1.0. For the absence category on sensitivity, both the 

training and the validation data received scores higher than 0.90.  For the accuracy results, the 

training data score a 0.96, and the validation data score a 0.93. Again, on both occasions, 

accuracy was higher than 0.90, representing a good result for the model.  

Table 6. Final model top variable of importance results. Importance is the sum of the Gini Coefficient. The % is the 

percentage of the total sum of the Gini Coefficient.  

 



23 
 

 

 

 

 

 

 

 

The third output of the model is the explanatory variable range diagnostics. This 

diagnostic evaluates the training, validation and prediction values, and assesses if they are 

adequate to produce a precise model by looking at the overlap of the training and prediction data 

(ESRI, 2019). The training column is the percentage of overlap for the training values and all the 

climatic variables values. The validation column is the percentage of overlap for the training 

values and the validation data. The prediction column is the percentage of overlap for the 

training values and prediction data. A value of one indicates that the training data and the 

prediction value are equivalent. Values less than zero indicate the model intends to make 

predictions on data that was not trained. Values higher than one indicates that the training data 

range is bigger than the range used for the prediction (ESRI, 2019). Values for the training share 

were very close to 1.00, i.e. a good result (Table 8). This comparably occurs in the validation 

share, where values are higher than 0.75. On the other hand, for the prediction shares all values 

are over 1.00. This means that the training value range was bigger than the prediction, and the 

model prediction is attempting to extrapolate.  

Table 7. Final model sensitivity and accuracy results. Sensitivity is the percentage a category (presence or absence) was 

correctly predicted. Accuracy is the percentage that takes in account when 1) a category is correctly predicted and when 2) a 

category was not correctly predicted.  
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Prediction 
 

The final output of the model is the prediction map. As shown in Figure 6, in red you can 

see the predicted potential habitat for Saxifraga hyperborea. Most of the predicted suitable areas 

are concentrated in the North Cascades and the Northeast corner of the Olympics. In addition, 

there is some dispersed potential habitat in the Okanogan and Canadian Rockies. Finally, in the 

south of Washington, the three main volcanos Mt. Rainier, Mt. St. Helens, and Mt. Adams, also 

appear to be a potential habitat for Saxifraga hyperborea.  

 

 

 

 

 

 

Table 8. Explanatory range diagnostic results. Training column is the percentage of overlap between the ranges of 

the training data and the input explanatory variable. The validation column is the percentage of overlap between 

ranges of the validation data and the training data. The prediction column is the percentage of overlap between the 

ranges of the training data and the prediction data. 
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Figure 6.Areas in red are the model prediction for potential distribution of Saxifraga hyperborea. 

 

 

 

 

 

 

Legend 
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Discussion 

The Random Forest-based output in ArcGIS predicted areas in Washington State of 

suitable habitat for Saxifraga hyperborea. The model accuracy and sensitivity was high (Table 9) 

and the mean squared error was low (Table 6). Even with a small sample of known presences in 

Washington, I am confident with the model performance based on the results. As shown in 

Figure 6, most of the prediction for suitable habitat occurred in the North Cascades, followed by 

the Olympic peninsula and the Southern Cascades. Areas without previous records were 

predicted as suitable by the model in the Okanagan and the Canadian Rockies (i.e., in 

Northeastern Washington). The model also identified snow precipitation as the main climatic 

variable driver for predicting Saxifraga hyperborea habitat. These results may serve as a 

preliminary approach to better reflect the potential discovery of new populations of Saxifraga 

hyperborea in Washington State. As discussed below, the model has areas where it can be 

improved. 

Okanagan and the Canadian Rockies 
 

A very interesting aspect of the model results was the prediction of potential habitat of 

Saxifraga hyperborea in the Okanagan and Canadian Rockies. As shown in Figure 7 all the 

different shades of green represent the Selkirk Mountain which is part of the Canadian Rockies. 

Most of the Selkirk Mountain in Washington State sit on the Colville National Forest. This area 

has been described as some of the wildest country in Washington State (N.S., 2022) and is the 

home of the mountain caribou (Rangifer tarandus caribou), a federal endangered and state 

endangered species (W.D.F.W., 2022). From the botanical perspective this ecoregion also holds 

the Halliday Fen Research Natural Area. In this research area, one can find thirteen rare plant 
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species, a wetland community, and three terrestrial plant communities (P.N.I.N.A.N., 2013). This 

corner of Washington State has been protected because it has an important ecological value.  

There is no Saxifraga hyperborea population known in this ecoregion in Washington 

State. Most of the known populations are in the North Cascades and the Northeast corner of the 

Olympics (Figure 1). However, the model predicted potential habitat in this region are very close 

to herbarium specimens of Saxifraga hyperborea from Idaho (Figure 7). These herbarium 

specimen data was obtained from the Consortium of Pacific Northwest Herbaria. Saxifraga 

hyperborea has therefore been identified in the same ecoregion (the Selkirk Mountains) as the 

model predictions as recently as 2 years ago (In Figure 7 the herbarium specimen labeled as 1 

was collected in 1986, specimen number 2 in 1982, specimen number 3 in 2019, specimen 

number 4 in 2019, specimen number 5 in 2020, specimen number 6 in 2004 and specimen 

number 7 in 1989). The model is predicting potential habitat in Washington, very close to where 

there are known populations in Idaho, lending confidence to the prediction. This area has been 

protected for its natural value and provides a sense of urgency for potential exploration for the 

search of Saxifraga hyperborea.  
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Resolution of Climate layers  

  

Building an SDM requires two types of data layers, 1) presence data of the species and 2) 

environmental data. This data is then transformed into a grid. The size of the cells in the grid 

determines the resolution of the data. Resolution can also be referred or called grain size. It 

might appear that the smaller the grain size, the better the model accuracy, since a small grain 

size can be able to represent more accurately the local environment and conditions (Manzoor et 

al., 2017). Nevertheless, some studies (Guisan et al., 2007; Manzoor et al., 2017) have found that 

a fine grain size data does not always ensure a more accurate prediction.  

Figure 7. Image zoomed in to Northeastern Washington. Areas in red represent the potential distribution of Saxifraga 

hyperborea. Yellow dots are herbarium specimens of Saxifraga hyperborea in Idaho State. The specimen labeled as 1 was 

collected in 1986, specimen 2 in 1982, specimen 3 in 2019, specimen 4 in 2019, specimen 5 in 2020, specimen 6 in 2004 and 

specimen 7 in 1989.  

Legend 
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The climatic data used in this study had a resolution of 1 km (~0.6 mi). This data was 

obtained from Adapt West (Wang et al., 2016). According to the monitoring site description data 

from the WNHP, Saxifraga hyperborea populations found in Washington State do not typically 

exceed the 6 square meter size. Surveyors often describe the population growth habit as 

“scattered-patchy” or with a “patchy distribution”. The large grain climatic data in this study 

may have had an impact on the accuracy of the model I used. In the presence data, each 1 km cell 

that was labeled as presence was overestimating the real species habitat extent.  Saxifraga 

hyperborea is also a habitat specialist as it grows in moist cool rock crevasses, completely 

shaded areas, and with little to no soil (WTU Herbarium, 2004; Camp et al., 2011). According to 

Manzoor et al (2017) using a small grain data, for habitat specialist species, will increase the 

distinction between different climatic units, proving a more precise species-habitat relationship. 

Finally, Lauzeral et al. (2013) suggested that plant distribution should be modeled using a small 

grain size, this is because they are restricted to the location they exist.  Species should be 

modeled at a spatial grain size based on the environment they depend on (Lauzeral et al., 2013).  

On the other hand, a too small of a grain size data made also generate limitations in the 

model. Species occurrence data at a small grain size needs to be highly accurate (Manzoor et al., 

2017). The presence data used in this study have population locations that were documented in 

1912. Unfortunately, these points are not accurate enough to be certain of the actual location 

where the population was found.  Additionally, this study area happened to be the entire 

Washington State, which is considered a large geographical extent for these types of studies. 

Climatic data at a small grain size at this large extent is not available (Connor et al., 2017). 

Commonly used open-source spatial data sites such as AdaptWest, PRIMS, Climate Toolbox, 

and WorldClim offer, as their smallest grain size, environmental data at 1 km resolution. Finally, 
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some studies (Hanberry, 2013; Lauzeral et al., 2013) suggested the use of large grain size 

climatic data for large geographical extents to avoid failed predictions at the environmental 

habitat edges.   

There is no rule of thumb to determine the ideal grain size for environmental data when 

building an SDM. For future studies the following should be considered:  a) the quality of the 

data, b) the ecology of the species and a) the extent of the study area (Lauzeral et al., 2013). For 

this study a smaller climatic grain size data, that its more representative of the species habit 

growth, and a smaller geographical extent may provide a more accurate model outcome.  

Pseudo-absence implications 
 

Another potential limitation of this study could have been the method to generate pseudo-

absence and the ratio of pseudo-absence and presence points. There has been a debate whether 

pseudo-absence ratio could affect model accuracy (Lauzeral et al., 2013). Pseudo-absence is 

described by Phillips et al., (2009) as a point that provides “information on the available 

environment in the study region.” According to Stokland et al., (2011) models that used pseudo-

absence points, rather than presence only models, tend to perform better because it increases 

species occurrence and environmental factor relationships. In the final model I used 31 presence 

points and 93 pseudo absence points. I decided to use an unbalanced data set, even though, 

Barbet-Massin (2012) study suggested that the same number of presence and absence points will 

generate a more reliable model. However, Lobo et al. (2011) recommended a highly unbalanced 

design when working with poorly surveyed species to increase the sample size. Additionally, 

Valverde et al. (2009) suggested that unbalanced data enables restriction in the model predictions 

when dealing with species that occupy a small fraction of the study area.  
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 I generated pseudo-absence points based on the Barbet-Massin et al. (2012) study “2 

degrees far method”. This method advised that pseudo-absence should be selected at random in a 

radius of 2 degrees (~138 mi) from each presence point. This was also recommended specifically 

for the Random Forest algorithm. For the selection of pseudo-absence points I used the random 

sampling with background extend limitations method (Iturbe et al., 2015).   This method 

involves a two-step process: 1) create a buffer around the presence point of ~0.5 mile (avoid 

pseudo-absence close to presence points) and 2) removing unsuitable habitat (refer to Methods, 

page 14). Pseudo absence points were then selected at random within the 2-degree radius, outside 

of the 0.5-mile buffer and within the suitable habitat. The suitable habitat included the following 

classifications “Ice and Snow”, “Barren Land”, “Deciduous Forest”, “Evergreen Forest” and 

“Mixed Forest” (National Land Cover, 2009).   

 One of the possible limitations of this study could have been that I did not constrain the 

random selection of pseudo-absences to the high elevations or more-specific land cover types 

where Saxifraga hyperborea are typically found. I made this choice as a “let the chips fall where 

they may” (i.e. more relaxed) approach with the model. Most of the known locations in 

Washington State of Saxifraga hyperborea are in open alpine rocky slopes. Mixed forest, 

deciduous forest and evergreen forest does not align with the habitat requirements of Saxifraga 

hyperborea, particularly because some of these forests grow at a lower elevation that I have 

found Saxifraga hyperborea. Assuming that these areas were potentially suitable habitat might 

have increased the overestimation in the model prediction. 

For future studies I suggest a more highly unbalanced presence absence ratio. I could 

potentially allow 5 times more pseudo-absence points (instead of 3), this will make available a 

bigger sample size.  One could also constrain more the suitable habitat. I recommend removing 
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areas that were below ~1,500 m (~5,000 ft) of elevation. The addition of elevation would create a 

more limited, but potentially more realistic, suitable habitat of Saxifraga hyperborea. 

Variables of importance 
 

 Alpine ecosystem is characteristically recognized by its weather, topography, and 

isolation. These conditions have created a highly biodiverse and a high endemism zone (Verrall 

et al., 2020). This area is described as the zone above the tree line (Verrall et al., 2020). In this 

region sun, wind and snow can change the weather very quickly. The cold weather and short 

growing season make it challenging for life to thrive in this environment. Growing seasons are 

described as days with temperatures above 5 Celsius (41 Fahrenheit) (Ghaberr et al., 2010).  It is 

not a coincidence that precipitation as snow was the model’s top variable of importance (Table 

6) for the determination of suitable habitat for Saxifraga hyperborea.  

The top variable of importance is calculated by using the Gini Coefficient (refer to page 

20). Table 6 shows the top variables of importance in the model, precipitation as snow got the 

highest rating, with a 21% of importance. As shown in Table 1, precipitation as snow, and 

elevation were (not surprisingly) highly correlated (r=0.75). Saxifraga hyperborea is found 

mainly at high elevations. This may be one of the explanations of why precipitation as snow is 

the top variable of importance. On the other hand, Korner (2021) argues that elevation is not 

necessarily a predictor for plant distribution in the alpine zone. He emphasizes that snow 

distribution determines plant distribution but, the distribution of snow is determined by wind and 

relief. For this reason, I can agree that snow, wind, and relief are the main drivers of plant 

distribution in the alpine ecosystems. Finally, snow also determines the reproductive behavior 

(Korner, 2021). Some of these plants, like Saxifraga hyperborea, wait until snow melts to start 

flowering.   
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Snow plays a very important role in the survival of alpine plants. As climate change 

continues its destructive course, the alpine ecosystem’s climate warming is the biggest threat. 

The snowmelt and snowpack will be altered by the change in precipitation and temperature 

(Inouye, 2019). Snow also provides protection from extreme temperature, winter desiccation, ice 

blast and solar radiation (Korner, 2021). The result of precipitation as snow as the top variable of 

importance was a reassurance that the model was detecting an important climatic variable for 

Saxifraga hyperborea and other alpine species.  
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Conclusion 

The main goal of this study was to detect potential habitat for the sensitive alpine species, 

Saxifraga hyperborea. The model predicted promising areas in the Okanagan and Canadian 

Rockies, where the species has not been found in Washington State. The high accuracy, low 

mean squared error and recent collection of herbarium specimens near the model predictions 

gave confidence to the model. There are multiple recommendations for the improvement of the 

model. The first improvement may be the selection of a bigger sample size by increasing the 

pseudo-absences (choosing 155 instead of 93). The second improvement would be to constrain 

pseudo-absence selection on areas above 1,600 m (5,200 ft) to simulate a more realistic habitat 

for Saxifraga hyperborea. The third improvement may be to find a higher resolution climatic 

layer that is more representative of the species habitat growth.  This study is the beginning of a 

potential exploration for Saxifraga hyperborea in Washington State in areas where it has not 

been recorded. This is the first approach to potentially start resolving the enigma on the species 

sensitive state status. Finally, in the case that the species is reconfirmed as sensitive, the 

prediction map could serve as candidate areas for the reintroduction of Saxifraga hyperborea. 
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